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Abstract. This research is devoted to the design of a digital excitation channel for a ring 

micromechanical gyroscope. The main methods of excitation of oscillations in angular rate 

vibration sensors were considered. The possibility of using a self-oscillating mode of operation 

for a ring resonator has been demonstrated. A mathematical model of operation of such system 

was created for this purpose. Besides a prototype electronics was built. It has experimentally 

confirmed the operability of the digital oscillation excitation channel and the possibility of stable 

maintenance of the oscillation velocity amplitude. 

 

Keywords: micromechanical gyroscope, self-oscillations, digital control system, 

microcontroller, ring resonator. 

Introduction 

All micromechanical angular rate sensors are vibration. This means that the principle of their operation 

is based on mechanical vibrations. There are several main ways to excite oscillations in micromechanical 

gyroscopes. Each of them has its own characteristics, advantages and disadvantages. The most 

promising is the autoexcitation method. In this case, the maintenance of the resonant frequency of 

oscillations is provided by mechanical parameters (coefficient of elasticity and damping) of the 

oscillatory system, consisting of a sensing element, displacement and force sensors and a positive 

feedback loop. 

There is currently a trend towards using more digital components in control electronics for 

micromechanical gyroscopes. This is due to the possibility of increasing the accuracy and stability of 

the parameters of the angular rate sensors, flexible adjustment of such components, as well as reducing 

the overall dimensions. Researches in this direction are relevant. 

The purpose of this work is to create an oscillation excitation circuit for a ring micromechanical 

gyroscope using digital technologies. 
 

1. Existing methods for excitation of oscillations in micromechanical gyroscopes 

Two main methods are of excitation of oscillations are used in oscillatory vibrating gyroscopes: by 

supplying an alternating voltage from an external generator to a force sensor and an auto-excitation 

method using position and force sensors. 
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When AC voltage is applied to the force sensor, it is necessary to stably maintain the oscillation 

frequency at the resonant frequency to increase the sensitivity of the device. So that a frequency 

feedback is required. In this regard, circuits with external generators and phase-locked loop frequency 

control are used [4, 8, 12]. 

Besides, an automatic gain control loop is used to maintain a constant amplitude of the vibration 

velocity. The difference between the set and measured amplitudes is fed to the input of the control link 

loop, and the corresponding voltage change on the force sensors is formed at the output. 

This approach to maintaining the resonant frequency is complex and has low stability but provides a 

large space for tuning the device [4]. This feature is due to the use of a voltage controlled oscillator 

(VCO) or a code controlled oscillator. The phase noise of the VCO affects the instability of the target 

frequency. 

The auto-excitation method consists in creating self-oscillations at the resonance frequency along the 

excitation axis of the gyroscope’s sensitive element. A necessary condition for the occurrence 

oscillations is the instability of the system. It means that it is essential to make feedback so that either 

the damping coefficient of the system is less than zero or the elastic coefficient. That’s why a positive 

feedback loop is created either in velocity or in position. The auto-excitation method is more stable 

because the oscillations always occur at the resonant frequency due to the design of the feedback loop. 

Electrostatic force sensors and capacitive position sensors are used in most of the manufactured 

micromechanical gyroscopes. The signal generated by the position transmitters is proportional to the 

displacement of the sensitive mass. A positive position feedback is implemented in such devices to 

create self-oscillations. In addition, this type of feedback is used in a gyroscope if the position sensors 

have a photoelectric principle of operation [1, 5, 10]. 

It is necessary to use a differentiation link to maintain a constant signal in terms of the velocity of 

movement of the sensitive element when creating a self-oscillating circuit with positive velocity 

feedback in micromechanical gyroscopes with capacitive position sensors [3, 6, 7, 11, 13, 14, 15]. The 

application of differentiating links leads to a noise increasement in the circuit and, as a consequence, to 

a lower stability of its operation. 

In connection with the widespread use of digital electronics, control circuits for micromechanical 

gyros based on it began to appear.  In [12], the author considers the creation of a digital electronic 

subsystem for a ring micromechanical angular rate sensor. The constructed circuit repeats the operation 

of analog electronics, presented in [4, 8]. The excitation of oscillations is implemented using a code-

driven generator. The feedback loops for the oscillation excitation channel and for the measurement 

channel are implemented using a field-programmable gate array (FPGA). However, the application of 

digital elements makes it possible to calibrate the gyroscope and provide the user with a signal, which 

dependence on external influences is reduced. 

In [5, 10], the microcontroller is involved only in signal processing when an angular rate occurs. 

The use of digital control devices in the construction of the oscillation excitation circuit is an urgent 

task, since this will make the operation of the micromechanical gyroscope more stable. Moreover, the 

implementation of regulating links inside the microcontroller or FPGA solves the problem of rebuilding 

the entire circuit when changing its parameters. 
 

2. Operation mode of the excitation channel for the ring micromechanical gyroscope 

The problem of creating velocity feedback arises in most oscillatory vibration gyroscopes, since 

capacitive position sensors are used in them. The use of differentiating links leads to a noise 

increasement in the excitation circuit, which has a negative effect on the stability of its operation. Thus, 

a scheme for creating self-oscillations with positive position feedback is more preferable in 

micromechanical gyroscopes with capacitive position sensors. 

 



International Workshop on Navigation and Motion Control (NMC 2020)
IOP Conf. Series: Materials Science and Engineering 984 (2020) 012010

IOP Publishing
doi:10.1088/1757-899X/984/1/012010

3

 

Figure 1. Ring micromechanical gyroscope sensing element design. 

 

Figure 1 shows the design of the ring micromechanical gyroscope. The silicon ring resonator is a 

distinctive feature of such devices. Conductive metal tracks, which are located on the surface of the ring, 

divide it into eight segments. The resonator is located in the gap between the upper and lower pole pieces 

of the magnetic system. The conductors on the ring, in conjunction with the magnetic system, act as 

force and velocity sensor. Thus, force sensors have a magnetoelectric principle of operation and velocity 

sensors – electromagnetic. 

Oscillations are excited by supplying alternating current to the force sensor. Figure 2 shows a 

simplified model of ring vibrations under the assumption that the ring mass is concentrated at eight 

points. 

 

 

Figure 2. Simplified model of ring resonator oscillations. 

 



International Workshop on Navigation and Motion Control (NMC 2020)
IOP Conf. Series: Materials Science and Engineering 984 (2020) 012010

IOP Publishing
doi:10.1088/1757-899X/984/1/012010

4

The equations of motion along the axis of excitation of oscillations (in Figure 2, the X axis) for a 

point of the ring are: 

𝑚�̈� + 𝑑𝑒�̇� + 𝑘𝑒𝑥 = 𝐹𝑎(𝑡) =  𝐵𝐿𝑖 ∙ sin (𝜔𝑡), (1) 

where m – the mass of a point on the ring, de – the damping coefficient along the excitation axis, ke 

– the elasticity coefficient along the excitation axis, 𝐹𝑎(𝑡) – the Ampere force applied from the force 

sensor to the point of the ring. 

In the steady state, the vibration velocity of the ring point is calculated by the formula: 

�̇�𝑠 = 
𝐵𝐿𝑖

𝑚2𝜉𝑒𝜔𝑒
∙ sin(𝜔𝑡), (2) 

where 𝜉𝑒 = 
𝑑𝑒

2√𝑘𝑒𝑚
 – damping factor, 𝜔𝑒 = √

𝑘𝑒

𝑚
 – natural vibration frequency. Thus, the oscillation 

velocity of this point is in the same phase as the applied current. At the same time the velocity of the 

ring point located at an angle of 
𝜋

2
 on the X’ axis: 

𝑥′̇ 𝑠 = −
𝐵𝐿𝑖

𝑚2𝜉𝑒𝜔𝑒
∙ sin(𝜔𝑡) (3) 

So, the velocity of the ring point along the X’ axis differs in phase from the current applied along the 

excitation axis by π. 

Therefore, according to the principle of operation of the velocity sensor (the law of electromagnetic 

induction), the signal from this sensor is also in phase with the applied alternating current and this signal 

carries information about the velocity of the ring point: 

𝜀𝑥
𝑖  =  

(𝐵𝐿)2𝑖

𝑚2𝜉𝑒𝜔𝑒
∙ sin(𝜔𝑡) (4) 

From equation (4), it can be concluded that it is possible to build a self-oscillating circuit when the 

output of the velocity sensor is closed with the input of the force sensor and an appropriate gain in the 

feedback is choosed. 

The microcontroller is responsible for the selection of the required gain in the feedback loop and for 

maintaining the given amplitude of the resonator oscillation velocity. 

 

3. Digital excitation circuit for ring micromechanical gyroscope 

A feature of the developed digital oscillation excitation circuit is the use of analog-to-digital and digital-

to-analog converters included in the microcontroller. 

 

 

Figure 3. Functional diagram of a digital circuit for excitation of oscillations in a ring 

micromechanical gyroscope. 



International Workshop on Navigation and Motion Control (NMC 2020)
IOP Conf. Series: Materials Science and Engineering 984 (2020) 012010

IOP Publishing
doi:10.1088/1757-899X/984/1/012010

5

Figure 3 denotes: 

 SE – ring sensing element; 

 VS – velocity sensor; 

 IA – instrumental amplifier; 

 PLL – phase-locked loop; 

 ADC – analog-to-digital converter; 

 EXTI – microcontroller pin for external interrupt; 

 DAC – digital-to-analog converter; 

 A – amplifier; 

 SW – current direction switch; 

 FS – force sensor. 

The signal at the output of the comparator corresponds to a low logic level, voltage is supplied to the 

DACe in the microcontroller, sufficient to remove the ring SE from the rest state at the moment of 

starting the electronics. Ae plays the role of a voltage follower, since the FSe is magnetoelectric and 

requires a current to flow. SE begins to stretch due to the action of the Ampere force. The SE velocity 

is detected by VSe. The signal from the VSe is amplified and shifted by Uref (corresponds to half of the 

microcontroller supply voltage) by an instrumental amplifier (IAe). The voltage from the IAe goes to the 

comparator and to the ADCe. 

The output of the comparator becomes a high logic level when the signal of the oscillation velocity 

from the output of the IAe exceeds Uref. This signal is applied to the current direction switch (SWe), and 

the current begins to flow in the opposite direction, which leads to the compression of the SE along the 

excitation axis. 

In addition, the frequency of the signal from the comparator is multiplied by 64 using PLL and 

applied to EXTI to clock the ADCe. The values obtained after analog-to-digital conversion are fed into 

the block for calculating the amplitude of the vibration velocity (amplitude detector). The regulator unit 

generates a value depending on the required amplitude of the SE oscillation velocity. Then the generated 

value is fed to the DACe. 

 

4. Electronics modeling and mock-up 

It is necessary to simulate operation of a micromechanical angular rate sensor in order to develop digital 

control loops for its oscillations. A ring micromechanical gyroscope is analogous to a solid-state wave 

gyroscope by its principle of operation. A detailed mathematical description of the solid-state wave 

gyroscope operation is presented in [16, 17]. The equations of motion adapted for a ring 

micromechanical gyroscope are presented in [9, 12, 18]. The mathematical description of the radial 

displacement of the ring resonator element during oscillations in the second mode [12, 18]: 

𝜔(𝜑, 𝑡) = 𝑝(𝑡) ∙ cos (2𝜑) + 𝑞(𝑡) ∙ sin(2𝜑), (5) 

In this case, the equations of motion of the ring micromechanical gyroscope and the primary 

electrical signals [12, 18]: 

{
 
 
 
 
 

 
 
 
 
 �̈�(𝑡) +

36

5
𝑘2𝜉�̇�(𝑡) +

36

5
𝑘2𝑝(𝑡) −

8

5
Ω�̇�(𝑡) =

1

5
𝐻𝑖1(𝑡),

�̈�(𝑡) +
36

5
𝑘2𝜉�̇�(𝑡) +

36

5
𝑘2𝑞(𝑡) +

8

5
Ω�̇�(𝑡) =

1

5
𝐻𝑖2(𝑡),

𝐸1 = 2𝐵(−
√2

2
𝑅 +

𝜋 + 2

8
𝑝(𝑡)) �̇�(𝑡) + 2𝐵

𝜋 + 2

8
�̇�(𝑡)𝑞(𝑡),

𝐸2 = 2𝐵(−
√2

2
𝑅 +

𝜋 + 2

8
𝑞(𝑡)) �̇�(𝑡) + 2𝐵

𝜋 + 2

8
�̇�(𝑡)𝑝(𝑡),

 (6) 



International Workshop on Navigation and Motion Control (NMC 2020)
IOP Conf. Series: Materials Science and Engineering 984 (2020) 012010

IOP Publishing
doi:10.1088/1757-899X/984/1/012010

6

where 𝑘 = √
𝐸𝐽

𝜌𝑆𝑅4
, 𝜉 =

1

𝜔0𝑄
, 𝐻 =

4𝐵√2

𝜋𝜌𝑆
, Ω – projection of the angular rate of the base on the axis of 

sensitivity of the gyroscope, B – magnetic field induction in the area of the ring resonator, E1, E2 – 

electromotive force in the circuit of primary and secondary oscillations, i1, i2 – current in the circuit of 

primary and secondary oscillations, R – ring resonator radius, S – ring cross-sectional area, J – moment 

of inertia of the cross section of the ring, ρ – resonator material density, E -  Young’s modulus for 

resonator material, Q – resonator Q-factor. 

A mathematical model of a ring resonator with a digital oscillation excitation channel was 

implemented in Matlab Simulink according to the equations of motion (6). Characterestics of a silicon 

ring resonator are in [2]. 

 

 

Figure 4. Model of a ring micromechanical gyroscope with a digital oscillation excitation channel. 

 

For the model shown in Figure 4, it is required to set the parameters of the ring resonator and the 

control loop for the amplitude of the vibration of the vibration velocity. The model reflects the behavior 

of the resonator with the known geometric parameters, corresponding to the real design, upon excitation 

of oscillations. 

A model of digital electronics (Figure 5) was developed and manufactured in order to investigate the 

possibilities of the digital channel for excitation of oscillations. 

 

 

Figure 5. Digital electronics layout for a ring micromechanical gyroscope. 

 

The model uses the sensor of the ring micromechanical gyroscope produced by JSC «Inertial 

technologies of «Technocomplex», Ramenskoye. The sensing element is mounted on an electronics 

board that contains the functional units described above. 

STM32F103RCT6 manufactured by STMicroelectronics was chosen as a microcontroller. This 

microcontroller contains three 12-bit A/D and two 12-bit D/A converters. The reference voltage for the 
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ADC and DAC corresponds to the supply voltage – 3V. A phase-locked loop was created to clock the 

ADC, which multiplies the reference frequency (the resonant frequency of the ring resonator 

oscillations) by 64. This is necessary to maintain a constant number of points processed by the 

microcontroller during the oscillation period. 

The microcontroller implements a control algorithm that maintains a constant specified amplitude of 

the oscillation velocity. Besides, it implements a protocol for interacting with external devices using 

UART and SPI interfaces. This allows to change parameters of the oscillation excitation circuit during 

its operation. 

 

5. Research result 

 

Figure 6. Transient excitation process. 

 

Figure 6 shows a graph of the transient process when oscillations are created after power-on for the 

oscillating circuit model in the Matlab Simulink. Transient time does not exceed 0.3 s. The overshoot 

amount is 20 %. 

The measured amplitude of the oscillation velocity was recorded after the instrumental amplifier at 

a data update rate of 100 Hz in normal climatic conditions (t ≈ 25°C) for an hour for different values of 

the given amplitude in order to experimentally determine the stability of the digital oscillation excitation 

circuit. The test results are summarized in the table 1. 

 
Table 1. Dependence of the error in maintaining the amplitude of the oscillation speed on a given 

value. 

Specified vibration velocity 

amplitude (mV) 
Error mean value (mV) Standard deviation (mV) 

95 -0.0003527 1.447 

110 0.00335 1.625 

145 -0.00843 2.129 

183 -0.00015019 2.618 

220 0.00276 3.194 

 

It can be concluded that the noise in the channel increases with an increase in the specified amplitude 

of the vibration velocity according to the data presented in Table 1. This behavior is due to the 

peculiarities of the work of the components that make up the circuit. The smallest possible amplitude of 

the oscillation velocity should be chosen from the point of view of minimizing the noise component and 
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increasing the stability of the circuit. It should be borne in mind that the sensitivity of the gyroscope also 

depends on the amplitude of the vibration velocity. 

 

Conclusion 

Positive velocity feedback in the excitation loop is more preferable for a ring micromechanical 

gyroscope with electromagnetic velocity sensors and magnetoelectric force sensors. The oscillations of 

the resonator differ in phase from the excitation signal by -π/2, but the signal from the velocity sensor 

is ahead of the oscillation by π/2 at resonance. This condition leads to the fact that the phase shift in the 

circuit is equal to zero, and the signal from the velocity sensor can be used to excite oscillations. 

Moreover, the described features of the operation of the ring micromechanical gyroscope make it 

possible to abandon the use of differentiating links. 

The proposed scheme of the digital excitation channel allows: 

 to simplify the composition of electronics; 

 to reduce the error of the gyroscope, since the accuracy of maintaining the resonant frequency 

is due to the parameters of the sensitive element and the feedback loop; 

 to make the adjustment of the feedback loop by the amplitude of the oscillation velocity more 

accessible during debugging stage, since the transfer function of the regulator is implemented 

inside the microcontroller. 

In addition, in the course of the research a mathematical model was created in Matlab Simulink and 

a prototype was made, which confirmed the performance of the proposed circuit. 

Further steps based on the result of the research were identified to improve the digital circuit for 

exciting oscillations of the ring micromechanical gyroscope: noise reduction by changing the input stage 

of amplifiers and finding a suitable transfer function of the regulator. 
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